If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+25.5t+2=0
a = -4.9; b = 25.5; c = +2;
Δ = b2-4ac
Δ = 25.52-4·(-4.9)·2
Δ = 689.45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25.5)-\sqrt{689.45}}{2*-4.9}=\frac{-25.5-\sqrt{689.45}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25.5)+\sqrt{689.45}}{2*-4.9}=\frac{-25.5+\sqrt{689.45}}{-9.8} $
| (x+5)*3=x/11=1x/2 | | 3(a-12)=9 | | 3x+3+6x+1=10x-5 | | 29-5(6x-3)=-6 | | 3^{2x-1}=3x+18 | | -4p+9=15 | | 7^(x+2)=441 | | x/4+10=-50 | | X^2+(x-14)^2+34^2=0 | | 2x/3=(x/2)+5 | | 1/4x+10=-50 | | 5x+10=4x-2. | | N+1=-2n+4 | | X^2-14x+676=0 | | 2y+84=90 | | -2(x+5)=-24 | | 12k-9k=3 | | y+78=y+12 | | 4(29/22)+5y=3 | | 2(6x-7)=2x+41 | | 5-2a=a-9 | | 5=2a=a-9 | | 4w-5=-2.5 | | 8x+10=10x+20 | | 2n+4+0n=10 | | -7w-38=-2(w-1) | | 1k/6=40 | | 15z-12=-57 | | 4n+3n+3=31 | | 5y+11X=167 | | 2a-3=5a | | k+2k+3k−k=−100 |